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ABSTRACT 

 

In this paper, we establish the week convergence the sequence of ishikawa iteration of quasi-

nonexpansive maps in the framework of uniformly convex Banach space. The result obtained 

generalize some well known existing results. 
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1.   INTRODUCTION 

 

Compatible maps and generalization of commuting maps are characterized. In term of 

coincidence points and common fixed point theorem for commuting maps. G erald Junck 

introduced this type of iteration in 1988. We use nonexpansive and quasi- nonexpansive 

mapping in the Junck iteration. We remark that the class of quasi- nonexpansive maps 

properly includes the class of nonexpansive maps with F(T) ≠Φ [ 1] . Gosh and Debnath [2] 

studied the convergence of iterates of the family of nonexpansive mapping in a uniformly 

convex Banach space. Rhoades and Temir [ 3 ] established the weak convergence of the 

sequence of the Mann iterates to a common fixed point of T and I by considering the map T 

to be I- nonexpansive. 

Recently kizilton c and Ozdemir established the week convergence of the sequence of 

modified Ishikawa iterates to a common fixed point of T and I. kuman, Kumethong and 

Jewwaiworn [ 4] also established the week convergence for an I- nonexpansive mapping in 

Banach space. Our aim is to establish the weak convergence of the sequence of Mann 

iteration to a common fixed point of two maps T and I. 

The Mann iteration scheme [ 5], for n= 0, 1, 2 …………………. and α2c[01] is defined as 

 Xn+1 = (1-αn) xn + αnTxn       (1) 

Further these iterative schemes are developed by taking two mapping S, T : Y            x   

where  T(Y) ⊆  S (Y) and x0 ∈ Y. Singh et at [ 6] discuss the following iterative procedure. 

 Sxn+1 = f (T, xn) , n = 0, 1, …       (2) 

It is called Junek iterative procedures [ 7     ]. It f (T, xn) in [   8,9   ] is replaced byTxn 

(1-αn)Sxn+ αnTxn                                                             (3),  
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It becomes Junck Picard and JunckMann iterationa and ishikawa iteration 

.Sxn+1 ₌(1-αn)Sxn + αn Tγn                                                                                    (4) 

 Sγn₌   (1-βn)Sxn + βn Txn 

 

2.   PRELIMINARIES 

 

Let K be a closed convexbanded subset of a uniformly concave Branch space (X,II.II) and T 

be a self mapping of X. T is nonexpansive on K if for all x,y K we have. 

           IITx-TyII ≤ IIx-yII                                       (5)  

A point of f  K is a fixed point of T if Tf =f. We denote the set of the fixed points of T by f 

(T), where  

f (T) ={f K : Tf =f}  

A map T satisfying  

          IITx-fII ≤ IIx-fII                                             (6) 

X K and f F (T), is called a quasi- nonexpansive mapping. 

Definition 2.1 

T is called I- nonexpansive map on K if IITx-TyII ≤ IITx-Ty,for all x,y, K T is called I- 

quasi nonexpansive map on K if IITx-fII ≤ IITx-fII for all x,y K is a common fixed point of I 

and T if x=Ix==Tx=Sx. 

 

2.   MAIN RESULT 

 

Theorem  

 Let K be a closed, convex and bounded subset of a uniformly convex banach space, and let T 

and I non self mapping of K with T be an I—quasi-nonexpansive and I a nonexpansive on K. 

Then x0  K the sequence {xn} of iterates defined by (4) converges weakly to common fixed 

point of F (T) F(S). 

Proof 

If F(T) F(S) ≠ we will assume, and F(T) F(S) is not a singleton. 

Since, IISxx+1 – f II = II (I-αn) (Sxn+αn Tγn) –fII 

= II (I-αn) (Sxn-f)+ αn (Tγn-f)II 

= II (I- αn) (Ixn-f) + αn (Sγn-f)II 

= II (I- αn) (xn-f) + αn ((1-βn)Sxn + βn Txn  -f)II  

= (I- αn) IIxn-fII +(αn (1-βn)IISxn-fII+ αnβnII Txn  -f II 

= (I- αn) II xn-f II +( αn  (1-βn) IIIxn-fII+ αnβnIIIxn  -f II) 

=(I- αn+αn-αnβn+ αnβn)II xn-f II 

II Snn+1 – f II = II xn – f II 
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αn ≠ o, {IIxn-fII } is a nonincreasing sequence. 

Then  

lim II xn – fII exist 

[6- ] when Y=X and S = id = I is the identity operator on X. 

 

Example : 

To solve cubic equation x
3
+4x

2
-5x-10=0 we rewrite the equation by splititing it into two parts 

Sx=5x and Tx=x
3
+4x

2
-10. 

Following table illustrates the convergence of the iterative scheme. 

 

n Sx n+1 Tx n x n+1 

0 -4 -5 -0.8 

1 -7.5568 -7.952 -1.51136 

2 -4.63956 -4.31543 -0.927913 

3 -7.08334 -7.35487 -1.41667 

4 -5.04219 -4.81539 -1.00844 

- - - - 

- - - - 

89 -5.98443 -5.98444 -1.19689 

90 -5.98443 -5.98443 -1.19689 

 

If α=0.9 then exist the result if α=0.8 then the following table exist also same result 

 

n Sx n+1 Tx n x n+1 

0 -3 -5 -0.6 

1 -7.6208 -8.776 -1.5241 

2 -4.9361 -4.2702 -0.9872 

3 -6.639 -7.06482 -1.3278 

4 -5.558816 -5.28876 -1.11176 

5 -6.256033 -6.4304164 -1.2512066 

6 -5.8085998 -5.696798 -1.16172 

7 -6.0973008 -6169476 -1.2194602 

8 -5.91154557 -5.8651071 -1.1823091 

9 -6.0313311 -6.0612776 -1.206266 

10 -5.954186 -5.9349 -1.1908372 

11 -6.0039365 -6.01163331 -1.2007873 

12 -5.9718921 -5.9638814 -1.194378 

13 -5.9925151 -5.9976714 -1.198503 

14 -5.9792256 -5.9759032 -1.1958451 

15 -5.9877901 -5.9899314 -1.197558 

16 -5.982271 -5.9808913 -1.1964542 

17 -5.9858282 -5.9867178 -1.1971656 
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18 -5.9835375 -5.9829656 -1.1967075 

19 -5.9850131 -5.9853826 -1.1970026 

20 -5.9840632 -5.9838258 -1.1968126 

21 -5.9846748 -5.9848285 -1.196935 

22 -5.9842785 -5.9841794 -1.1968557 

23 -5.9845363 -5.9846016 -1.1969073 

24 -5.9843691 -5.9843272 -1.1968738 

25 -5.9844783 -5.9845066 -1.1968957 

26 -5.9844074 -5.9843905 -1.1968815 

27 -5.984453 -5.9844644 -1.1968906 

 

This is the real value of the iteration in different type of all value in α. The result is -5.9844. 
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