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ABSTRACT: 

 

This study investigates the time-optimal control problem in Susceptible-Infected-Recovered 

(SIR) epidemic models, focusing on various control policies such as vaccination, isolation, 

culling, and transmission reduction. Applying Pontryagin’s Minimum Principle (PMP) to 

unconstrained control problems, we establish that, across all investigated policies, only 

bang–bang controls with at most one switch are admissible. When a switch occurs, the 

optimal strategy involves delaying the control action for a certain duration before applying 

the control at the maximum rate for the remainder of the outbreak.This finding contrasts with 

prior research on unconstrained problems aiming to minimize the total infectious burden, 

where the optimal strategy involves utilizing maximal control throughout the entire epidemic. 

Our results suggest a critical consequence: in many epidemiological scenarios, it may be 

impossible to simultaneously minimize the total infectious burden and the epidemic duration. 

Numerical simulations reveal unexpected outcomes, including scenarios where the optimal 

control is delayed even when the control reproduction number is below one. Moreover, the 

switching time from no control to maximum control can occur post-peak infection. These 

results hold particular significance for livestock diseases, where minimizing outbreak 

duration is prioritized due to sanitary restrictions imposed on farms during ongoing 

epidemics, such as animal movements and export bans.In this research paper, we delve into 

the development of time-optimal control strategies for Susceptible-Infected-Recovered (SIR) 

epidemic models in cattle. Our primary focus is on minimizing the time required to control 

infectious disease outbreaks through the implementation of preventive measures. By adopting 

a deterministic epidemic framework, we explore the intricacies of SIR models and their linear 

analysis, emphasizing the key concepts of SIR models, minimum time, delayed intervention, 

and the significance of sushisen control. 

 

KEYWORDS: SIR models, Time-Optimal Control, Pontryagin’s Minimum Principle, 

Disease Intervention Policies, Livestock Diseases, Epidemiology. 

 

INTRODUCTION: 

 

The outbreak of infectious diseases in cattle poses a significant threat to both livestock health 

and economic stability. Utilizing the SIR model as the foundation, we aim to devise time-
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optimal control strategies that efficiently mitigate the spread of diseases among susceptible, 

infected, and recovered populations. This paper addresses the pressing need for novel 

preventive measures through a rigorous analysis of the SIR model and its deterministic 

epidemic nature. Bang–Bang Controls with One Switch: Regardless of the control policy 

(vaccination, isolation, culling, or transmission reduction), optimal controls exhibit bang–

bang characteristics with at most one switch.Delay and Maximum Rate Strategy based 

Optimal strategies involve delaying control actions followed by applying controls at the 

maximum rate for the remaining outbreak duration after a switch.Trade-Off Between Burden 

and Duration using The inability to simultaneously minimize the total infectious burden and 

epidemic duration suggests a trade-off in optimal control strategies.Unforeseen Delay in 

Optimal Control in  Numerical simulations demonstrate that optimal control can be delayed 

even with a control reproduction number lower than one.Post-Peak Control Activation ways 

to Switching from no control to maximum control can occur after the peak infection, 

challenging traditional notions of optimal control timing.These results have profound 

implications for the management of livestock diseases, particularly in scenarios where 

minimizing outbreak duration is paramount due to stringent sanitary restrictions. Decision-

makers and policymakers should consider these findings when formulating strategies for 

disease control and resource allocation during epidemics. 

SIR Model and Linear Analysis: 

Our investigation begins with a comprehensive exploration of the Susceptible-Infected-

Recovered (SIR) model and its linear analysis. We delve into the mathematical representation 

of the model, emphasizing its deterministic nature and the implications of linearity on the 

control strategies. Through in-depth research, we establish a solid foundation for the 

subsequent development of time-optimal control frameworks. 

Data set  

Dataset Name is Cattle Disease Outbreaks2023  of Veterinary and Agricultural Health 

Agencies, Research Institutions based Temporal Coverage January 2023 to December 2023 

in Geographical Coverage of Tamil nadu India. 

Variables  Total Cattle Population: The overall number of cattle in the affected region in  

Susceptible (S), Infected (I), Recovered (R): Daily counts or proportions of cattle in each 

compartment. 

Infection Rates: 

• Transmission Rate (β): Daily rate of transmission of the disease. 

• Recovery Rate (γ): Daily rate of recovery or transition to the recovered state. 

Control Measures: 

• Vaccination Rate (u_v): Daily rate of vaccination. 

• Isolation Rate (u_1): Daily rate of susceptible individuals undergoing isolation. 

• Culling Rate (u_2): Daily rate of culling infected individuals. 

• Transmission Reduction Rate (u_3): Daily rate of reducing disease transmission. 
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Outcome Measures: 

• Peak Infection Rate: Maximum daily rate of new infections during the epidemic. 

• Total Infected: Cumulative count of infected cattle. 

• Outcome Severity Index: A composite measure reflecting the severity of the epidemic 

based on health and economic impacts. 

 

TIME-OPTIMAL CONTROL PROBLEM FORMULATION: 

 

Building upon the linear analysis of the SIR model, we formulate a time-optimal control 

problem tailored to the specific dynamics of cattle diseases. This involves defining the 

control variables and constraints to ensure the efficient allocation of preventive measures. 

Our goal is to minimize the time required to bring the system under control, thereby reducing 

the impact of infectious disease outbreaks on the cattle population. 

■ State Equations: The SIR model equations are adapted to represent the dynamics of 

cattle diseases: 

dtdS=−βSI+u1S−uvS  

dtdI=βSI−γI+u2I  

dtdR=γI+u3R where S, I, and R denote the susceptible, infected, and recovered 

compartments, respectively. 

■ Control Variables: Define control variables representing preventive measures: 

u1(t): Rate of susceptible individuals undergoing preventive measures. 

u2(t): Rate of infected individuals subjected to control measures. 

u3(t): Rate of recovered individuals influenced by control strategies. 

uv(t): Vaccination rate. 

■ Objective Function: Formulate the objective function to minimize the time to control 

the            system:  =∫J(u)=∫0Tdt  

■ Constraints: Introduce constraints to ensure realistic and feasible control strategies: 

≤max0≤u1(t),u2(t),u3(t),uv(t)≤Umax: Control variables within permissible 

bounds. 

≥0S(t),I(t),R(t)≥0: Non-negativity of state variables. 

■ Optimization Problem: Combine the objective function and constraints to form the 

time-optimal control problem: Minimize =∫Minimize J(u)=∫0Tdt subject 

■ subject to dtdS=−βSI+u1S−uvS, dtdI=βSI−γI+u2I, dtdR=γI+u3R 

and 0≤u1≤max, 0≤and 0≤u1(t),u2(t),u3(t),uv(t)≤Umax, 0≤S(t),I(t),R(t) 

■ Significance: This time-optimal control problem formulation addresses the unique 

dynamics of cattle diseases, providing a foundation for developing preventive 

strategies that efficiently minimize the duration of infectious disease outbreaks. 

Solving this optimization problem will yield insights into the optimal allocation of 

control measures, aiding stakeholders in making informed decisions for the effective 

management of cattle health. 
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NEW ALGORITHMS FOR LINEAR TIME-OPTIMAL CONTROL: 

 

In the general setting of an optimal control problem for Susceptible-Infected-Recovered 

(SIR) epidemic models in cattle, the objective is to determine control strategies that minimize 

the time required to bring the disease under control while considering the dynamics of 

susceptible, infected, and recovered populations. This involves formulating a mathematical 

model with control variables that represent preventive measures, subject to constraints 

imposed by the biological system. The key components of the optimal control problem 

include the state equations, cost function, control constraints, and optimization criteria.The 

time-optimal control problem, we propose innovative algorithms tailored to the linear nature 

of the SIR model. These algorithms are designed to optimize control strategies, taking into 

account the interplay between susceptible, infected, and recovered populations. Our 

contribution lies in the development of algorithms that can be practically implemented to 

achieve time-efficient prevention of infectious diseases in cattle. 

�  Absolute Minimum Value: Let f(x) be a function defined in its domain say Z ⊂ R. 

Then, f(x) is said to have the minimum value at a point a ∈ Z, if f(x) ≥ f(a), ∀ x ∈ Z. 

�  Absolute Maximum Value: Let f(x) be a function defined in its domain say Z ⊂ R. 

Then, f(x) is said to have the maximum value at a point a ∈ Z, if f(x) ≤ f(a), ∀ x ∈ Z. 

�  Every continuous function on a closed interval has a maximum and a minimum value. 

�  Every continuous function defined in a closed interval has a maximum or a minimum 

value which lies either at the end points or at the solution of f'(x) = 0 or at the point, 

where the function is not differentiable. 

�  Let f be a continuous function on an interval I = [a, b]. Then, f has the absolute 

maximum value and/attains it at least once in I. Also, f has the absolute minimum 

value and attains it at least once in I.  

State Equations: 

Define a set of ordinary differential equations (ODEs) that describe the dynamics of the SIR 

model. These equations should capture the changes in the susceptible (S), infected (I), and 

recovered (R) populations over time. Incorporate parameters representing disease 

transmission rates, recovery rates, and other relevant biological factors.  

dS/dt=−βSI+u1(t)S  

dL/dt=βSI−γI+u2(t)I  

dR/dt=γI+u3(t)R  

Here, S, I, and R represent the susceptible, infected, and recovered populations, respectively. 

β is the transmission rate, γ is the recovery rate, and u1(t), u2(t), and u3(t) are the control 

functions representing preventive measures.  

Cost Function: Formulate a cost function that quantifies the objective of minimizing the 

time to control the epidemic. This may include a combination of factors such as the total 

number of infected individuals, economic costs associated with disease spread, and the 

duration of the intervention. The cost function is typically expressed as an integral over the 

time horizon. J(u)=∫0J(u)=∫0Tf(S,I,R,u1,u2,u3,t)dt  
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Control Constraints: Introduce constraints on the control functions to ensure their feasibility 

and relevance. These constraints may reflect limitations on the intensity or timing of 

preventive measures. For instance, 0≤(≤max0≤u1(t),u2(t),u3(t)≤Umax could represent upper 

bounds on the control variables. 

Optimization Criteria: Formulate the optimal control problem as finding the control 

functions u1(t), u2(t), and u3(t) that minimize the cost function while satisfying the state 

equations and control constraints. 

Minimize J(u)=∫0Tf(S,I,R,u1,u2,u3,t)dt  

subject to dtdS=−βSI+u1(t)S,dtdI=βSI−γI+u2(t)I,dtdR=γI+u3(t)R and 0≤≤max 

and 0≤u1(t),u2(t),u3(t)≤Umax 

Solving the Optimal Control Problem: Employ numerical techniques such as Pontryagin's 

Maximum Principle, optimal control software, or other optimization methods to solve the 

formulated optimal control problem and obtain the optimal control functions. 

Fig A: Flow chart of SIR  

Solving the optimal control problem for Susceptible-Infected-Recovered (SIR) epidemic 

models in cattle involves employing numerical techniques to find the optimal control 

functions. Several methods can be utilized, such as Pontryagin's Maximum Principle, optimal 

control software, or other optimization techniques. Here, we will discuss a general approach 

to solving the optimal control problem: 

Pontryagin's Maximum Principle (PMP): 

Apply Pontryagin's Maximum Principle, a powerful tool in optimal control theory, to derive a 

set of necessary conditions for optimality.The PMP provides a system of differential 

equations, known as the adjoint equations, which must be solved alongside the state 

equations and transversality conditions. 

y: be an n-component column vector, 

a: be an r-component column vector, 

b: be an s-component column vector. 

h: E
n → 

E
1
, 

g: E
n → 

E
r
, 

w: E
n → 

E
s
 be given functions. 

Discretization of Time: 

Convert the continuous-time optimal control problem into a discrete-time form to facilitate 

numerical solution. Use a time-stepping method, such as Euler's method or Runge-Kutta 

methods, to discretize the state equations, control functions, and adjoint equations over the 

specified time horizon. 

μ =0 or x
2
+y

2 
=1,i.e., we  are on the boundary of the semicircle. If μ =0 

Optimization Software: 

Leverage optimization software packages that are specifically designed for solving optimal 

control problems. Popular optimization libraries such as MATLAB's Optimization Toolbox, 

Python's SciPy library using dedicated optimal control solvers like GPOPS-II can be utilized. 
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# Example using SciPy's minimize function 

get 

λ =0, since x
-1/3

 is never 0 in the range -1≤ x ≤ 1. But 

substitution of λ =0  from scipy.optimize import minimize The constraints are now 

differentiable, and the optimum solution is (x*,y*)=(0,1) and h*=1. But once again the Kuhn-

Tucker method fails λ
5 

=0, so that the control μ
4
 is singular. 

However, since x
4 

=1,  we choose μ 
4 

=-1 in order to 

bring x
5
 down to 0. 

def objective_function(control_variables): 

# Define the objective function based on the cost function and state equations 

The solution of the problem for T ≥ 7 is carried out in the same way that we solved example 

2.3. Namely, observe that x
5
 =0 and λ

5 
= λ

6 
=0, so that the control is singular. We simply 

make λ
k 
=0 for k ≥ 7 so that μ

 k 
=0 for all k ≥ 7 

 # ... 

# Define constraints, initial conditions, and other parameters Kleindorfer (1975). Let I
k
, P

k
 

and S
k
 be the inventory,production, and demand at time k , respectively. 

Let I
0
 be the initial inventory# Use SciPy's minimize function to solve the optimization 

problem 

result = minimize(objective_function, initial_guess, constraints=constraints) 

Dynamic Programming: 

Implement dynamic programming techniques for solving discrete-time optimal control 

problems.Discretize the state and control spaces and iteratively update the value function and 

optimal control policy until convergence. 

# Define parameters and discretization 

N = 100  # Number of time steps 

dt = 1   # Time step size 

# Initialize value function 

V = np.zeros((N, N, N)) 

# Iterate until convergence 

convergence_threshold = 1e-6 

converged = False 

while not converged: 

    # Iterate over states in reverse order 

    for k in range(N-2, -1, -1): 

        # Update value function and optimal control policy using the Bellman equation 

        # ... 

    # Check for convergence 

    change_in_value = np.max(np.abs(V - previous_V)) 

    if change_in_value < convergence_threshold: 

        converged = True 

    else: 

        previous_V = V.copy() 

# Extract optimal control policy 

# ... 
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Direct Collocation Methods: 

# Example using direct collocation with CasADi in Python 

from casadi import MX, vertcat, collocation_points, integrator 

# Define symbolic variables and parameters 

S = MX.sym('S') 

I = MX.sym('I') 

R = MX.sym('R') 

u1 = MX.sym('u1') 

u2 = MX.sym('u2') 

u3 = MX.sym('u3') 

uv = MX.sym('uv') 

# Construct state vector and control vector 

x = vertcat(S, I, R) 

u = vertcat(u1, u2, u3, uv) 

# Define dynamics and cost function based on the SIR model 

# Create collocation points 

tau = collocation_points(3, 'radau') 

# ... 

# Formulate and solve the optimal control problem using collocation 

# ... 

Utilize direct collocation methods, where the continuous-time optimal control problem is 

approximated by a finite-dimensional optimization problem. This involves discretizing the 

state and control variables at specified points, transforming the optimal control problem into a 

nonlinear programming problem. 

Sensitivity Analysis: 

Conduct sensitivity analysis to assess the impact of parameter variations on the optimal 

control strategies. This helps understand the robustness of the obtained control functions with 

respect to changes in model parameters. 

 
 

Identify Key Parameters: 

⚫ Identify the parameters that play a significant role in the SIR model with vaccination 

control. These may include transmission rates (β), recovery rate (γ), vaccination rate 

(uv ), and other relevant parameters. If in a function the dependent variable y can be 

explicitly written in terms of independent variable x i.e. in terms of 'x' must not 

involve  y in any manner then the function is called an explicit function If the 

dependent variable y and independent variable x are so convoluted in an equation that 

y cannot be written explicitly as function of x then f(x) is said to be an implicit 

function. 
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e.g. x
2
 + y

2
 = tan

-1
 xy 

 

Vary Parameters: 

Systematically vary each identified parameter over a reasonable range while keeping other 

parameters fixed. The variations should cover both plausible values and extreme scenarios. 

 

Evaluate Control Strategies: 

For each set of parameter values, solve the optimal control problem to obtain the 

corresponding optimal control strategies. This involves using the numerical methods and 

optimization software discussed earlier. 

 

Quantify Changes in Control Strategies: 

Quantify changes in the optimal control strategies concerning variations in parameter values. 

This may involve assessing changes in the timing, intensity, and duration of vaccination 

control in response to parameter variations. 

 
 

Analyze Sensitivity Indices: 

Calculate sensitivity indices or metrics to quantify the impact of parameter variations on the 

control strategies. Common metrics include the partial derivatives of the control variables 

with respect to each parameter or sensitivity indices obtained through regression analysis. 

 
Here, u represents the optimal control variable, and θ represents the parameter of interest. 

Visualization and Interpretation: 

Visualize the results of the sensitivity analysis using plots, charts(fig1), or other graphical 

representations. Interpret the findings to understand which parameters have the most 

significant influence on the optimal control strategies. 



                   International Journal of Multidisciplinary Approach                                     

                            and Studies                                         ISSN NO:: 2348 – 537X     

                          

 
 

 
 

Volume 12, No.2, Mar – Apr 2025 

  

 

P
ag

e 
 : 
6

3
 

Fig 1: optimal control progress 

 
 

Robustness Assessment: 

Assess the robustness of the obtained control functions by considering the variability in 

optimal strategies across different parameter sets. Identify parameters that, when varied, lead 

to significant changes in control recommendations. 

 
 

Uncertainty Analysis: 

Consider uncertainties in parameter estimates or inherent variability in disease dynamics. 

Perform uncertainty analysis to understand how uncertainties in parameter values influence 

the reliability of optimal control strategies. 

 
Recommendations for Decision-Makers: 

Provide recommendations to decision-makers based on the sensitivity analysis. Highlight the 

parameters that significantly influence the optimal control strategies(fig.2)  and propose 

strategies to account for uncertainties in parameter values. 

Fig 2 Iterative Refinement 

If necessary, iterate the sensitivity analysis based on feedback from stakeholders or new 

insights. Refine the model, adjust parameter ranges, and repeat the analysis to enhance the 

reliability of the results. 
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Validation and Simulation: 

Validate the obtained optimal control functions through simulation studies using the original 

SIR model.Evaluate the performance of the optimal strategies in terms of disease control, 

duration, and economic considerations. 

 

Disease Control Effectiveness: 

The optimal control strategies demonstrated significant effectiveness in controlling the spread 

of the disease. The simulations revealed a notable reduction in the number of infected 

individuals compared to baseline scenarios. 

 
 

Vaccination control played a crucial role, leading to a rapid decline in the infected 

population. The timing and intensity of vaccination were optimized to maximize the impact 

on disease transmission. 
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Duration of Outbreak: 

The duration of the disease outbreak was substantially reduced with the implementation of 

optimal control strategies. Early and targeted intervention, including timely vaccination, 

contributed to a swift containment of the epidemic. 

 
Compared to scenarios without control or alternative control measures, the optimized 

strategies demonstrated a faster decline in the infected population, indicating a more efficient 

outbreak resolution. 

Economic Implications: 

Economic considerations were integrated into the simulations, encompassing vaccination 

costs, treatment expenses, and potential losses in livestock productivity. The optimal control 

strategies showcased cost-effectiveness, as the upfront investment in vaccination led to 

significant savings by mitigating the economic impact of prolonged disease outbreaks. 

 
 

Sensitivity analysis was conducted to assess the robustness of the optimal control strategies to 

variations in model parameters. Results indicated that the strategies remained effective across 

a range of parameter values, highlighting their adaptability to different epidemiological 

scenarios. Where available, the simulation results were validated against real-world data or 

historical records of cattle disease outbreaks. The alignment between the model predictions 

and observed data provided further validation of the model and the practical applicability of 

the optimal control strategies. Interpret the results in the context of practical implementation, 

providing insights into the optimal timing and intensity of preventive measures. Offer 

recommendations for stakeholders involved in managing infectious disease outbreaks in 
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cattle populations. By employing these numerical techniques and methods, researchers can 

obtain practical and implementable optimal control (fig.3) strategies for mitigating the impact 

of infectious diseases in cattle populations. The chosen approach may depend on the specific 

characteristics of the SIR model, the nature of the control variables, and the available 

computational resources. The optimal control problem within the general setting outlined 

above, researchers can derive insights into time-optimal strategies for preventing and 

managing infectious disease outbreaks in cattle populations, providing valuable guidance for 

practical implementation and decision-making.  

 
 

Result Comparison with Baseline Scenarios: 

Comparisons with baseline scenarios, including scenarios without control or alternative 

strategies, reinforced the superiority of the optimal control strategies. The optimized 

interventions consistently outperformed alternative approaches in terms of disease control, 

outbreak duration, and economic considerations. 
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Fig 3: Overall Results  

`  

 

 

CONCLUSION: 

 

Our research culminates in a comprehensive understanding of time-optimal control strategies 

for SIR epidemic models in cattle. By integrating linear analysis, algorithm development, and 

practical implementation, we contribute to the field of mathematical biosciences, offering 

valuable insights into the prevention of infectious diseases with a focus on minimum time, 

sushisen control, delayed intervention, and deterministic epidemic frameworks. 
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