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ABSTRACT  :  

 

If  G  be a group and H its any subgroup. S  is a right transversal to a subgroup H  of group 

.G  Then S  forms a right quasigroup with identity with respect to the binary operation   

given by HxySyx  .  We find some relationship between solvability and Nilpotency for 

finite groups. 
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INTRODUCTION  

 

From the beginning of the last century in mathematics the study of groups whose each proper 

subgroups have important properties. A Dedekind group is a group whose each subgroup are 

normal. Groups all of whose proper subgroups are abelian was studied by Miller and Moreno 

[1].  They proved that such finite groups are solvable. Such an infinite group can even be 

simple.  Baer [2] showed that a non-abelian group whose all subgroups are embedded as 

normal subgroups is a direct product of quaternion group, an elementary abelian 2-group and 

an abelian group all of whose elements are of odd order. A subgroup H   of a group G  is said 

to be stable if for any pair 1S and 2S  of right transversals to H  in G , the group torsions 

   )(111
HCoreSHSG GS   and    )(222

HCoreSHSG GS   are isomorphic. Clearly, 

any normal subgroup of G  is stable. A finite solvable group all of whose proper subgroups 

are stable is a Dedekind group [3, Theorem 2.4]. 

 

PRELIMINARIES:  

Solvable Groups 

Let G  be a group. Define subgroups nG  of G  inductively as follows: Define GG 1  where 

G is the derived subgroup of the group G , being generated by all commutators in G  thus 

],[ GGG  .Assuming that nG  has already been defined, define ],[1 mmm GGG  .  

Thus we get a series  1210  mm GGGGGG  

This series is called the derived series or the commutator series of G , nG  is called nth term 

of the derived series, although it need not reach 1 or even terminate. Of course all the factors 
)1()( / nn GG are abelian groups: the first of these, GG / , is of particular importance and 

if often written abG  since it is the largest abelian quotient group of G . 
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THE LOWER AND UPPER CENTRAL SERIES 

 

Let G  be a group. There is another natural way of generating a descending sequence of 

commutators subgroups of a group, by repeatedly commuting with G . Define subgroups 

)(GLn inductively as follows:  

Define     GGGGLGGLGGL  ,)(,)(,)( 010 . Supposing that )(GLn  has already been that 

defined, define  )(,)(1 GLGGL nn  . Clearly each )(GLn is normal in G . Thus we get a 

descending series  )()()()( 210 GLGLGLGLG n of G  is called lower central series of G . 

Notice that )(/)( 1 GLGL nn   lies in the center of )(/ 1 GLG n  and that each )(GLn  is fully 

invariant in G . Like the derived series the lower central series does not reach }{e in general 

and )(1 GL  is the first term of lower central series where as )0(G  is the first term of the derived 

series. 

Define normal subgroups )(GZn of G  inductively as follows: Define )()(},{)( 10 GZGZeGZ   

the center of G . Observe that ))(/()(/)( 001 GZGZGZGZ  the center of )(/ 0 GZG . Supposing that 

)(GZn  has already defined, define )(1 GZn by equation ))(/()(/)(1 GZGZGZGZ nnn   

Thus we get an ascending series  )()()()(}{ 210 GZGZGZGZe n  of normal subgroups 

of G . This is called the upper central series of G . It is dual to the lower central series in the 

same sense that the center is dual to the commutator subgroup. Each )(GZn  is characteristic 

but not necessarily fully-invariant in G . This series need not reach G , but if G  is finite, the 

series terminate to a subgroup called hyper center. 

 

NILPOTENT GROUPS 

 

A group G  is said to be nilpotent if }{)( eGLn   or equivalently GGZn )(  for some n . A group 

G  is said to be nilpotent of class n  if }{)( eGLn   but }{)(1 eGLn   or equivalently .)(1 GGZn   

A group G  is called nilpotent if it has a central series that is, a normal 

series GGGGG n   2101 such that ii GG /1 is contained in the center of iGG i /  

 

RESULT 

 

Theorem 2.1 : If  G  be a finite solvable group. Then the following statements are equivalent.  

1. Given a maximal subgroup M  of G  and MKG   for some subgroup KMCoreGK G )(,  . 

2. All maximal subgroups of G  are strongly stable. 

3. All maximal subgroups of G  are stable. 

4. G  is nilpotent. 

5. All Sylow subgroups of G  are stable. 

6. All Sylow subgroups are strongly stable. 

7. Given a Sylow subgroup P  and PKG   for some subgroup KPCoreGK G )(,  . 

8. All maximal subgroups of G  are pre-normal. 

9. All maximal subgroups of G  are strongly pre-normal. 

10. Given a maximal subgroup M  of G  and MKG   for some subgroup K  of ., KMKG    
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11. All Sylow subgroups of G are pre-normal. 

12. All Sylow subgroups of G  are strongly pre-normal. 

13. Given a Sylow subgroup P  of G  and PKG   for some subgroup K  of ., KPKG   

 

Proof:  34  A finite nilpotent subgroup has all its maximal subgroups normal and so 

stable. Conversely, suppose that all maximal subgroups of a finite solvable group G  are 

stable. Then we have to show that G  is nilpotent. Suppose contrary. Let G  be a minimal 

counter example. Then there exists a maximal subgroup M  of G  which is not normal. 

Suppose that  .)( eMCoreG  Then )(/ MCoreG G  is also a solvable group of smaller order all of 

whose maximal subgroups are stable. By the fact that G  is minimal counter example, 

)(/ MCoreG G  is nilpotent and so )(/ MCoreM G being maximal subgroup of )(/ MCoreG G is 

normal. But, then M  is normal, a contradiction to the supposition. Thus  .)( eMCoreG   Let G  

be a nontrivial minimal normal subgroup of G . Then  MLG   and  }.{eML  Since M  is 

stable and L  can be taken as a right transversal which is a group, group torsion of all right 

transversals of M  in G  will be trivial. But, then M  will be normal, a self-contradiction. 

In order to prove rest statements we need further result: 

 

Theorem 2.2 Let H  be a subgroup of G . Then H  is a stable subgroup of G  if and only if 

         HCoreSHSHCoreSHS GG  2211  

for any pair 1S and 2S of right transversals of H  in G . 

Theorem 2.3 Let H  be a subgroup of a finite group G . Then the following conditions are 

equivalent.[3] 

(i.) H  is strongly stable subgroup. 

(ii.) ).)(( HKHCoreHHKG G   

(iii.) .)( KHCoreGHKG G  

Theorem 2.4 Suppose that G  is a finitely generated soluble group. If G is not nilpotent, then 

it has a finite image that is not nilpotent.  

 

PROOF OF THEOREM 2.1  

 

 21 Result follows from theorem 2.2   

 43  It G  be a finitely generated solvable group all of whose maximal subgroups are stable 

and  K  be a  its finite quotient. Then K is finite solvable and all its maximal subgroups will 

be stable. But, then K  will be nilpotent. The result follows from theorem which states that a 

finitely generated non-nilpotent group has a finite image that is not nilpotent. The rest of 

equivalences follows as in the theorem 2.3  

 32  A subgroup H  of G  will be called a strongly stable subgroup if 

whenever HKHKG 21  , where 1K  and 2K are subgroups of G , we have 

))(()())(()( 2211 HCoreKHKHCoreKHK GG  or equivalently, 

)(/))(/()( HCoreHHCoreKHKKHG GG   
And every nilpotent group is solvable. 
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 14 If M  is a maximal subgroup of a finite nilpotent group, then .)( MMCoreG   Thus 

conditions from 1 to 4 are equivalent. 

 54   In a finite nilpotent group all Sylow subgroups are normal and so stable. 

 15 Since G  is solvable, given a Sylow p-subgroup P , it has a complement subgroup Q  

such that }.{, eQPPQG   Thus Q  can be taken as a right transversal whose group torsion 

is trivial. But, then since P  is stable, group torsion of all right transversals of P  in G  are 

trivial. This means that P  is normal. 

The proof of equivalence of 4, 5, 6 and 7 is as in the proof of equivalence 

of 4, 3, 2 and 1. 

 84   Obvious from definition.  

 18 Assume that all maximal subgroups of G  are pre-normal. To prove that G  is nilpotent. 

Suppose not and let G  be a minimal counter example. Then there exists a maximal subgroup 

M  of G  which is not normal. If },{)( eMCoreG   then )(MCoreG G  is also a solvable group of 

smaller order all of whose maximal subgroups are pre-normal. Since G  is minimal counter 

example, )(MCoreG G  is nilpotent. Hence all maximal subgroup of )(MCoreG G  are normal. In 

particular, M is normal, a contradiction. Thus }.{)( eMCoreG  As in the proof of 21 , take a 

nontrivial minimal normal subgroup L  of G . Then MLG   and  eML  . Then L  can be 

taken as a right transversal of M  in G . Clearly, .)( LLM   Thus, since M is pre normal, for 

any right transversal S  of M  in G , .)( LSM   In particular .)( SLSM   This shows that S  

is a group and so M  is normal, a contradiction.  

Theorem 2.5 Let G  be a nilpotent group and H  a subgroup of G  then for every transversal 

S  to H  in }{eSxG  such that .Hhxhx   In particular Szyxzyfx  ,),(  and 

 },{ xeSSymGS   and ).( SSGS GNG
S

  

Proof: Let G  be a nilpotent group, take H  be any subgroup of G  

then HHNgHNH GG  )()(  such that HGgHgHg  i.e. 1 such that Hghg 1 i.e. 

. and 1 HhHhhghg   

Since }.{,  where 11 eSxHhxhgHSGg   

Since hxhhxhHg  1
11 )()( that so  

.such that  }{,..

. somefor  or  11
1

1
1

xhxeSxei

Hhxhx

xhxh

Hhhxhxhhxhxh -













 

In particular .,),( Szyxzyfx  . 

Since .)( HSSf   If q be the permutation representation of )( SSf  on S defined by  

    zyfzyfq S ,,   then   a homomorphism SGSSSf S )(: defined by .)()( xhqhx   Then 

we see that 

 

 

Szyxxzyf S  ,))(,(i.e.  

Szyxzyfx SS  ,),(
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SzyxeSSymzyf S  ,}),{(),( that  so  

 },{ xeSSymGS   

Now 

     1

1

,,

),(





 xzyfxzyf

xzyxf

SSSS
x

S


 

      xxxfxzyf SSS
x 

1
,,  

            xxxfxxxxfxfxxfzyf SSSSSSS
x

SS
x 







 



1111
,,,,, 

        xxxxfxxfzyf SSS
x

SS
x 


,,,

1
  

        S
SSS

x
SS

x Gxxfxxfzyf 


,,,
1

  

So ).( SSGS GNG
S

   
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